Type that defines the filter used in the similaritySearchVectorWithScore and maxMarginalRelevanceSearch methods. It includes limit, filter and a flag to include embeddings.
Embeddings interface for generating vector embeddings from text queries, enabling vector-based similarity searches.
Add documents to the Convex table. It first converts the documents to vectors using the embeddings and then calls the addVectors method.
Documents to be added.
Promise that resolves when the documents have been added.
Add vectors and their corresponding documents to the Convex table.
Vectors to be added.
Corresponding documents to be added.
Promise that resolves when the vectors and documents have been added.
Creates a VectorStoreRetriever
instance with flexible configuration options.
Optional
kOrFields: number | Partial<VectorStoreRetrieverInput<ConvexVectorStore<DataModel, TableName, IndexName, TextFieldName, EmbeddingFieldName, MetadataFieldName, InsertMutation, GetQuery>>>If a number is provided, it sets the k
parameter (number of items to retrieve).
Optional
filter: { Optional filter criteria to limit the items retrieved based on the specified filter type.
Optional
callbacks: CallbacksOptional callbacks that may be triggered at specific stages of the retrieval process.
Optional
tags: string[]Tags to categorize or label the VectorStoreRetriever
. Defaults to an empty array if not provided.
Optional
metadata: Record<string, unknown>Additional metadata as key-value pairs to add contextual information for the retrieval process.
Optional
verbose: booleanIf true
, enables detailed logging for the retrieval process. Defaults to false
.
VectorStoreRetriever
instance based on the provided parameters.Optional
maxReturn documents selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to the query AND diversity among selected documents.
Text to look up documents similar to.
Searches for documents similar to a text query by embedding the query and performing a similarity search on the resulting vector.
Text query for finding similar documents.
Optional
k: numberNumber of similar results to return. Defaults to 4.
Optional
filter: { Optional filter based on FilterType
.
Optional
_callbacks: CallbacksOptional callbacks for monitoring search progress
A promise resolving to an array of DocumentInterface
instances representing similar documents.
Similarity search on the vectors stored in the Convex table. It returns a list of documents and their corresponding similarity scores.
Query vector for the similarity search.
Number of nearest neighbors to return.
Optional
filter: { Optional filter to be applied.
Promise that resolves to a list of documents and their corresponding similarity scores.
Searches for documents similar to a text query by embedding the query, and returns results with similarity scores.
Text query for finding similar documents.
Optional
k: numberNumber of similar results to return. Defaults to 4.
Optional
filter: { Optional filter based on FilterType
.
Optional
_callbacks: CallbacksOptional callbacks for monitoring search progress
A promise resolving to an array of tuples, each containing a document and its similarity score.
Static
fromStatic method to create an instance of ConvexVectorStore from a list of documents. It first converts the documents to vectors and then adds them to the Convex table.
List of documents to be converted to vectors.
Embeddings to be used for conversion.
Database configuration for Convex.
Promise that resolves to a new instance of ConvexVectorStore.
Static
fromStatic method to create an instance of ConvexVectorStore from a list of texts. It first converts the texts to vectors and then adds them to the Convex table.
List of texts to be converted to vectors.
Metadata for the texts.
Embeddings to be used for conversion.
Database configuration for Convex.
Promise that resolves to a new instance of ConvexVectorStore.
Class that is a wrapper around Convex storage and vector search. It is used to insert embeddings in Convex documents with a vector search index, and perform a vector search on them.
ConvexVectorStore does NOT implement maxMarginalRelevanceSearch.