A vector store using LibSQL/Turso for storage and retrieval.

Type Parameters

  • Metadata extends MetadataDefault = MetadataDefault

Hierarchy

  • VectorStore
    • LibSQLVectorStore

Constructors

Properties

FilterType: InStatement | WhereCondition<Metadata>
embeddings: EmbeddingsInterface

Embeddings interface for generating vector embeddings from text queries, enabling vector-based similarity searches.

Methods

  • Adds vectors to the vector store.

    Parameters

    • vectors: number[][]

      The vectors to add.

    • documents: Document<Metadata>[]

      The documents associated with the vectors.

    Returns Promise<string[]>

    The IDs of the added vectors.

  • Creates a VectorStoreRetriever instance with flexible configuration options.

    Parameters

    • OptionalkOrFields: number | Partial<VectorStoreRetrieverInput<LibSQLVectorStore<Metadata>>>

      If a number is provided, it sets the k parameter (number of items to retrieve).

      • If an object is provided, it should contain various configuration options.
    • Optionalfilter: InStatement | WhereCondition<Metadata>

      Optional filter criteria to limit the items retrieved based on the specified filter type.

    • Optionalcallbacks: Callbacks

      Optional callbacks that may be triggered at specific stages of the retrieval process.

    • Optionaltags: string[]

      Tags to categorize or label the VectorStoreRetriever. Defaults to an empty array if not provided.

    • Optionalmetadata: Record<string, unknown>

      Additional metadata as key-value pairs to add contextual information for the retrieval process.

    • Optionalverbose: boolean

      If true, enables detailed logging for the retrieval process. Defaults to false.

    Returns VectorStoreRetriever<LibSQLVectorStore<Metadata>>

    • A configured VectorStoreRetriever instance based on the provided parameters.

    Basic usage with a k value:

    const retriever = myVectorStore.asRetriever(5);
    

    Usage with a configuration object:

    const retriever = myVectorStore.asRetriever({
    k: 10,
    filter: myFilter,
    tags: ['example', 'test'],
    verbose: true,
    searchType: 'mmr',
    searchKwargs: { alpha: 0.5 },
    });
  • Deletes vectors from the store.

    Parameters

    • params: {
          deleteAll?: boolean;
          ids?: string[] | number[];
      }

      Delete parameters.

      • OptionaldeleteAll?: boolean
      • Optionalids?: string[] | number[]

        The ids of the vectors to delete.

    Returns Promise<void>

  • Return documents selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to the query AND diversity among selected documents.

    Parameters

    • query: string

      Text to look up documents similar to.

    • options: MaxMarginalRelevanceSearchOptions<InStatement | WhereCondition<Metadata>>
    • _callbacks: undefined | Callbacks

    Returns Promise<DocumentInterface<Record<string, any>>[]>

    • List of documents selected by maximal marginal relevance.
  • Searches for documents similar to a text query by embedding the query and performing a similarity search on the resulting vector.

    Parameters

    • query: string

      Text query for finding similar documents.

    • Optionalk: number

      Number of similar results to return. Defaults to 4.

    • Optionalfilter: InStatement | WhereCondition<Metadata>

      Optional filter based on FilterType.

    • Optional_callbacks: Callbacks

      Optional callbacks for monitoring search progress

    Returns Promise<DocumentInterface<Record<string, any>>[]>

    A promise resolving to an array of DocumentInterface instances representing similar documents.

  • Performs a similarity search using a vector query and returns documents with their scores.

    Parameters

    • query: number[]

      The query vector.

    • k: number

      The number of results to return.

    • Optionalfilter: InStatement | WhereCondition<Metadata>

    Returns Promise<[Document<Metadata>, number][]>

    An array of tuples containing the similar documents and their scores.

  • Searches for documents similar to a text query by embedding the query, and returns results with similarity scores.

    Parameters

    • query: string

      Text query for finding similar documents.

    • Optionalk: number

      Number of similar results to return. Defaults to 4.

    • Optionalfilter: InStatement | WhereCondition<Metadata>

      Optional filter based on FilterType.

    • Optional_callbacks: Callbacks

      Optional callbacks for monitoring search progress

    Returns Promise<[DocumentInterface<Record<string, any>>, number][]>

    A promise resolving to an array of tuples, each containing a document and its similarity score.

  • Returns Serialized