MariaDB vector store integration.

Setup: Install @langchain/community and mariadb.

If you wish to generate ids, you should also install the uuid package.

npm install @langchain/community mariadb uuid
Instantiate
import {
MariaDBStore,
DistanceStrategy,
} from "@langchain/community/vectorstores/mariadb";

// Or other embeddings
import { OpenAIEmbeddings } from "@langchain/openai";
import { PoolConfig } from "mariadb";

const embeddings = new OpenAIEmbeddings({
model: "text-embedding-3-small",
});

// Sample config
const config = {
connectionOptions: {
host: "127.0.0.1",
port: 3306,
user: "myuser",
password: "ChangeMe",
database: "api",
} as PoolConfig,
tableName: "testlangchainjs",
columns: {
idColumnName: "id",
vectorColumnName: "vector",
contentColumnName: "content",
metadataColumnName: "metadata",
},
// supported distance strategies: COSINE (default) or EUCLIDEAN
distanceStrategy: "COSINE" as DistanceStrategy,
};

const vectorStore = await MariaDBStore.initialize(embeddings, config);

Add documents
import type { Document } from '@langchain/core/documents';

const document1 = { pageContent: "foo", metadata: { baz: "bar" } };
const document2 = { pageContent: "thud", metadata: { bar: "baz" } };
const document3 = { pageContent: "i will be deleted :(", metadata: {} };

const documents: Document[] = [document1, document2, document3];
const ids = ["1", "2", "3"];
await vectorStore.addDocuments(documents, { ids });

Delete documents
await vectorStore.delete({ ids: ["3"] });

Similarity search
const results = await vectorStore.similaritySearch("thud", 1);
for (const doc of results) {
console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * thud [{"baz":"bar"}]

Similarity search with filter
const resultsWithFilter = await vectorStore.similaritySearch("thud", 1, {"country": "BG"});

for (const doc of resultsWithFilter) {
console.log(`* ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * foo [{"baz":"bar"}]

Similarity search with score
const resultsWithScore = await vectorStore.similaritySearchWithScore("qux", 1);
for (const [doc, score] of resultsWithScore) {
console.log(`* [SIM=${score.toFixed(6)}] ${doc.pageContent} [${JSON.stringify(doc.metadata, null)}]`);
}
// Output: * [SIM=0.000000] qux [{"bar":"baz","baz":"bar"}]

As a retriever
const retriever = vectorStore.asRetriever({
searchType: "mmr", // Leave blank for standard similarity search
k: 1,
});
const resultAsRetriever = await retriever.invoke("thud");
console.log(resultAsRetriever);

// Output: [Document({ metadata: { "baz":"bar" }, pageContent: "thud" })]

Hierarchy

  • VectorStore
    • MariaDBStore

Constructors

Properties

FilterType: string | object

Defines the filter type used in search and delete operations. Can be an object for structured conditions or a string for simpler filtering.

chunkSize: number = 500
collectionId?: string
collectionMetadata: null | Metadata
collectionName: string = "langchain"
collectionTableName?: string
contentColumnName: string
distanceStrategy: DistanceStrategy
embeddings: EmbeddingsInterface

Embeddings interface for generating vector embeddings from text queries, enabling vector-based similarity searches.

idColumnName: string
metadataColumnName: string
pool: Pool
schemaName: null | string
tableName: string
vectorColumnName: string

Accessors

Methods

  • Method to add documents to the vector store. It converts the documents into vectors, and adds them to the store.

    Parameters

    • documents: Document<Record<string, any>>[]

      Array of Document instances.

    • Optionaloptions: {
          ids?: string[];
      }

      Optional arguments for adding documents

      • Optionalids?: string[]

    Returns Promise<void>

    Promise that resolves when the documents have been added.

  • Method to add vectors to the vector store. It converts the vectors into rows and inserts them into the database.

    Parameters

    • vectors: number[][]

      Array of vectors.

    • documents: Document<Record<string, any>>[]

      Array of Document instances.

    • Optionaloptions: {
          ids?: string[];
      }

      Optional arguments for adding documents

      • Optionalids?: string[]

    Returns Promise<void>

    Promise that resolves when the vectors have been added.

  • Creates a VectorStoreRetriever instance with flexible configuration options.

    Parameters

    • OptionalkOrFields: number | Partial<VectorStoreRetrieverInput<MariaDBStore>>

      If a number is provided, it sets the k parameter (number of items to retrieve).

      • If an object is provided, it should contain various configuration options.
    • Optionalfilter: string | object

      Optional filter criteria to limit the items retrieved based on the specified filter type.

    • Optionalcallbacks: Callbacks

      Optional callbacks that may be triggered at specific stages of the retrieval process.

    • Optionaltags: string[]

      Tags to categorize or label the VectorStoreRetriever. Defaults to an empty array if not provided.

    • Optionalmetadata: Record<string, unknown>

      Additional metadata as key-value pairs to add contextual information for the retrieval process.

    • Optionalverbose: boolean

      If true, enables detailed logging for the retrieval process. Defaults to false.

    Returns VectorStoreRetriever<MariaDBStore>

    • A configured VectorStoreRetriever instance based on the provided parameters.

    Basic usage with a k value:

    const retriever = myVectorStore.asRetriever(5);
    

    Usage with a configuration object:

    const retriever = myVectorStore.asRetriever({
    k: 10,
    filter: myFilter,
    tags: ['example', 'test'],
    verbose: true,
    searchType: 'mmr',
    searchKwargs: { alpha: 0.5 },
    });
  • Method to delete documents from the vector store. It deletes the documents that match the provided ids

    Parameters

    • params: {
          filter?: Record<string, unknown>;
          ids?: string[];
      }
      • Optionalfilter?: Record<string, unknown>
      • Optionalids?: string[]

    Returns Promise<void>

    Promise that resolves when the documents have been deleted.

    await vectorStore.delete(["id1", "id2"]);
    
  • Method to ensure the existence of the collection table in the database. It creates the table if it does not already exist.

    Returns Promise<void>

    Promise that resolves when the collection table has been ensured.

  • Method to ensure the existence of the table in the database. It creates the table if it does not already exist.

    Parameters

    • dimensions: number = 1536

      Number of dimensions in your vector data type. Default to 1536.

    Returns Promise<void>

    Promise that resolves when the table has been ensured.

  • Return documents selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to the query AND diversity among selected documents.

    Parameters

    • query: string

      Text to look up documents similar to.

    • options: MaxMarginalRelevanceSearchOptions<string | object>
    • _callbacks: undefined | Callbacks

    Returns Promise<DocumentInterface<Record<string, any>>[]>

    • List of documents selected by maximal marginal relevance.
  • Searches for documents similar to a text query by embedding the query and performing a similarity search on the resulting vector.

    Parameters

    • query: string

      Text query for finding similar documents.

    • Optionalk: number

      Number of similar results to return. Defaults to 4.

    • Optionalfilter: string | object

      Optional filter based on FilterType.

    • Optional_callbacks: Callbacks

      Optional callbacks for monitoring search progress

    Returns Promise<DocumentInterface<Record<string, any>>[]>

    A promise resolving to an array of DocumentInterface instances representing similar documents.

  • Method to perform a similarity search in the vector store. It returns the k most similar documents to the query vector, along with their similarity scores.

    Parameters

    • query: number[]

      Query vector.

    • k: number

      Number of most similar documents to return.

    • Optionalfilter: Record<string, unknown>

      Optional filter to apply to the search.

    Returns Promise<[Document<Record<string, any>>, number][]>

    Promise that resolves with an array of tuples, each containing a Document and its similarity score.

  • Searches for documents similar to a text query by embedding the query, and returns results with similarity scores.

    Parameters

    • query: string

      Text query for finding similar documents.

    • Optionalk: number

      Number of similar results to return. Defaults to 4.

    • Optionalfilter: string | object

      Optional filter based on FilterType.

    • Optional_callbacks: Callbacks

      Optional callbacks for monitoring search progress

    Returns Promise<[DocumentInterface<Record<string, any>>, number][]>

    A promise resolving to an array of tuples, each containing a document and its similarity score.

  • Returns Serialized

  • Static method to create a new MariaDBStore instance from an array of Document instances. It adds the documents to the store.

    Parameters

    • docs: Document<Record<string, any>>[]

      Array of Document instances.

    • embeddings: EmbeddingsInterface

      Embeddings instance.

    • dbConfig: MariaDBStoreArgs & {
          dimensions?: number;
      }

      MariaDBStoreArgs instance.

    Returns Promise<MariaDBStore>

    Promise that resolves with a new instance of MariaDBStore.

  • Static method to create a new MariaDBStore instance from an array of texts and their metadata. It converts the texts into Document instances and adds them to the store.

    Parameters

    • texts: string[]

      Array of texts.

    • metadatas: object | object[]

      Array of metadata objects or a single metadata object.

    • embeddings: EmbeddingsInterface

      Embeddings instance.

    • dbConfig: MariaDBStoreArgs & {
          dimensions?: number;
      }

      MariaDBStoreArgs instance.

    Returns Promise<MariaDBStore>

    Promise that resolves with a new instance of MariaDBStore.