Class for retrieving documents from a VectorStore based on vector similarity or maximal marginal relevance (MMR).

VectorStoreRetriever extends BaseRetriever, implementing methods for adding documents to the underlying vector store and performing document retrieval with optional configurations.

VectorStoreRetriever

VectorStoreRetrieverInterface

Type Parameters

Hierarchy (view full)

Implements

Constructors

  • Initializes a new instance of VectorStoreRetriever with the specified configuration.

    This constructor configures the retriever to interact with a given VectorStore and supports different retrieval strategies, including similarity search and maximal marginal relevance (MMR) search. Various options allow customization of the number of documents retrieved per query, filtering based on conditions, and fine-tuning MMR-specific parameters.

    Type Parameters

    Parameters

    • fields: VectorStoreRetrieverInput<V>

      Configuration options for setting up the retriever:

      • vectorStore (required): The VectorStore instance implementing VectorStoreInterface that will be used to store and retrieve document embeddings. This is the core component of the retriever, enabling vector-based similarity and MMR searches.

      • k (optional): Specifies the number of documents to retrieve per search query. If not provided, defaults to 4. This count determines the number of most relevant documents returned for each search operation, balancing performance with comprehensiveness.

      • searchType (optional): Defines the search approach used by the retriever, allowing for flexibility between two methods:

        • "similarity" (default): A similarity-based search, retrieving documents with high vector similarity to the query. This type prioritizes relevance and is often used when diversity among results is less critical.
        • "mmr": Maximal Marginal Relevance search, which combines relevance with diversity. MMR is useful for scenarios where varied content is essential, as it selects results that both match the query and introduce content diversity.
      • filter (optional): A filter of type FilterType, defined by the vector store, that allows for refined and targeted search results. This filter applies specified conditions to limit which documents are eligible for retrieval, offering control over the scope of results.

      • searchKwargs (optional, applicable only if searchType is "mmr"): Additional settings for configuring MMR-specific behavior. These parameters allow further tuning of the MMR search process:

        • fetchK: The initial number of documents fetched from the vector store before the MMR algorithm is applied. Fetching a larger set enables the algorithm to select a more diverse subset of documents.
        • lambda: A parameter controlling the relevance-diversity balance, where 0 emphasizes diversity and 1 prioritizes relevance. Intermediate values provide a blend of the two, allowing customization based on the importance of content variety relative to query relevance.

    Returns VectorStoreRetriever<V>

Properties

callbacks?: Callbacks

Optional callbacks to handle various events in the retrieval process.

filter?: V["FilterType"]

Optional filter applied to search results, defined by the FilterType of the vector store. Allows for refined, targeted results by restricting the returned documents based on specified filter criteria.

k: number = 4

Specifies the number of documents to retrieve for each search query. Defaults to 4 if not specified, providing a basic result count for similarity or MMR searches.

metadata?: Record<string, unknown>

Metadata to provide additional context or information about the retrieval operation.

name?: string

Additional options specific to maximal marginal relevance (MMR) search, applicable only if searchType is set to "mmr".

Includes:

  • fetchK: The initial number of documents fetched before applying the MMR algorithm, allowing for a larger selection from which to choose the most diverse results.
  • lambda: A parameter between 0 and 1 to adjust the relevance-diversity balance, where 0 prioritizes diversity and 1 prioritizes relevance.
searchType: string = "similarity"

Determines the type of search operation to perform on the vector store.

  • "similarity" (default): Conducts a similarity search based purely on vector similarity to the query.
  • "mmr": Executes a maximal marginal relevance (MMR) search, balancing relevance and diversity in the retrieved results.
tags?: string[]

Tags to label or categorize the retrieval operation.

vectorStore: V

The instance of VectorStore used for storing and retrieving document embeddings. This vector store must implement the VectorStoreInterface to be compatible with the retriever’s operations.

verbose?: boolean

If set to true, enables verbose logging for the retrieval process.

Methods

  • Adds an array of documents to the vector store, embedding them as part of the storage process.

    This method delegates document embedding and storage to the addDocuments method of the underlying vector store.

    Parameters

    • documents: DocumentInterface<Record<string, any>>[]

      An array of documents to embed and add to the vector store.

    • Optionaloptions: AddDocumentOptions

      Optional settings to customize document addition.

    Returns Promise<void | string[]>

    A promise that resolves to an array of document IDs or void, depending on the vector store's implementation.

  • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

    Type Parameters

    • T extends string = string

    Parameters

    • fields: {
          description?: string;
          name?: string;
          schema: ZodType<T, ZodTypeDef, T>;
      }
      • Optionaldescription?: string

        The description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.

      • Optionalname?: string

        The name of the tool. If not provided, it will default to the name of the runnable.

      • schema: ZodType<T, ZodTypeDef, T>

        The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

    Returns RunnableToolLike<ZodType<ToolCall | T, ZodTypeDef, ToolCall | T>, DocumentInterface<Record<string, any>>[]>

    An instance of RunnableToolLike which is a runnable that can be used as a tool.

  • Generate a stream of events emitted by the internal steps of the runnable.

    Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

    A StreamEvent is a dictionary with the following schema:

    • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
    • name: string - The name of the runnable that generated the event.
    • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
    • tags: string[] - The tags of the runnable that generated the event.
    • metadata: Record<string, any> - The metadata of the runnable that generated the event.
    • data: Record<string, any>

    Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

    ATTENTION This reference table is for the V2 version of the schema.

    +----------------------+-----------------------------+------------------------------------------+
    | event                | input                       | output/chunk                             |
    +======================+=============================+==========================================+
    | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_start         | {'input': 'hello'}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_stream        |                             | 'Hello'                                  |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_end           | 'Hello human!'              |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_start       |                             |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_stream      |                             | "hello world!"                           |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
    +----------------------+-----------------------------+------------------------------------------+
    | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
    +----------------------+-----------------------------+------------------------------------------+
    | on_retriever_start   | {"query": "hello"}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
    +----------------------+-----------------------------+------------------------------------------+
    | on_prompt_start      | {"question": "hello"}       |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
    +----------------------+-----------------------------+------------------------------------------+
    

    The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

    In addition to the standard events above, users can also dispatch custom events.

    Custom events will be only be surfaced with in the v2 version of the API!

    A custom event has following format:

    +-----------+------+------------------------------------------------------------+
    | Attribute | Type | Description                                                |
    +===========+======+============================================================+
    | name      | str  | A user defined name for the event.                         |
    +-----------+------+------------------------------------------------------------+
    | data      | Any  | The data associated with the event. This can be anything.  |
    +-----------+------+------------------------------------------------------------+
    

    Here's an example:

    import { RunnableLambda } from "@langchain/core/runnables";
    import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
    // Use this import for web environments that don't support "async_hooks"
    // and manually pass config to child runs.
    // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

    const slowThing = RunnableLambda.from(async (someInput: string) => {
    // Placeholder for some slow operation
    await new Promise((resolve) => setTimeout(resolve, 100));
    await dispatchCustomEvent("progress_event", {
    message: "Finished step 1 of 2",
    });
    await new Promise((resolve) => setTimeout(resolve, 100));
    return "Done";
    });

    const eventStream = await slowThing.streamEvents("hello world", {
    version: "v2",
    });

    for await (const event of eventStream) {
    if (event.event === "on_custom_event") {
    console.log(event);
    }
    }

    Parameters

    • input: string
    • options: Partial<RunnableConfig<Record<string, any>>> & {
          version: "v1" | "v2";
      }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<StreamEvent>

  • Parameters

    • input: string
    • options: Partial<RunnableConfig<Record<string, any>>> & {
          encoding: "text/event-stream";
          version: "v1" | "v2";
      }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<Uint8Array>

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

    Parameters

    • params: {
          onEnd?: ((run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>);
          onError?: ((run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>);
          onStart?: ((run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>);
      }

      The object containing the callback functions.

      • OptionalonEnd?: ((run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>)

        Called after the runnable finishes running, with the Run object.

          • (run, config?): void | Promise<void>
          • Parameters

            Returns void | Promise<void>

      • OptionalonError?: ((run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>)

        Called if the runnable throws an error, with the Run object.

          • (run, config?): void | Promise<void>
          • Parameters

            Returns void | Promise<void>

      • OptionalonStart?: ((run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>)

        Called before the runnable starts running, with the Run object.

          • (run, config?): void | Promise<void>
          • Parameters

            Returns void | Promise<void>

    Returns Runnable<string, DocumentInterface<Record<string, any>>[], RunnableConfig<Record<string, any>>>