The LangChain package for CloudSQL for Postgres provides a way to connect to Cloud SQL instances from the LangChain ecosystem.
Main features:
In order to use this package, you first need to go through the following steps:
$ yarn add @langchain/google-cloud-sql-pg
Before you use the PostgresVectorStore you will need to create a postgres connection through the PostgresEngine interface.
import { Column, PostgresEngine, PostgresEngineArgs, PostgresVectorStore, VectorStoreTableArgs } from "@langchain/google-cloud-sql-pg";
import { SyntheticEmbeddings } from "@langchain/core/utils/testing";
const pgArgs: PostgresEngineArgs = {
user: "db-user",
password: "password"
}
const engine: PostgresEngine = await PostgresEngine.fromInstance(
"project-id",
"region",
"instance-name",
"database-name",
pgArgs
);
const vectorStoreTableArgs: VectorStoreTableArgs = {
metadataColumns: [new Column("page", "TEXT"), new Column("source", "TEXT")],
};
await engine.initVectorstoreTable("my-table", 768, vectorStoreTableArgs);
const embeddingService = new SyntheticEmbeddings({ vectorSize: 768 });
Use a PostgresVectorStore to store embedded data and perform vector similarity search for Postgres.
const pvectorArgs: PostgresVectorStoreArgs = {
idColumn: "ID_COLUMN",
contentColumn: "CONTENT_COLUMN",
embeddingColumn: "EMBEDDING_COLUMN",
metadataColumns: ["page", "source"]
}
const vectorStoreInstance = await PostgresVectorStore.initialize(engine, embeddingService, "my-table", pvectorArgs)
PostgresVectorStore interface methods available:
See the full Vector Store tutorial.
Use PostgresChatMessageHistory
to store messages and provide conversation history in Postgres.
First, initialize the Chat History Table and then create the ChatMessageHistory instance.
// ChatHistory table initialization
await engine.initChatHistoryTable("chat_message_table");
const historyInstance = await PostgresChatMessageHistory.initialize(engine, "test", "chat_message_table");
The create method of the PostgresChatMessageHistory receives the engine, the session Id and the table name.
PostgresChatMessageHistory interface methods available:
See the full Chat Message History tutorial.
Use a document loader to load data as LangChain Document
s.
import { PostgresEngine, PostgresLoader } from "@langchain/google-cloud-sql-pg";
const documentLoaderArgs: PostgresLoaderOptions = {
tableName: "test_table_custom",
contentColumns: [ "fruit_name", "variety"],
metadataColumns: ["fruit_id", "quantity_in_stock", "price_per_unit", "organic"],
format: "text"
};
const documentLoaderInstance = await PostgresLoader.initialize(PEInstance, documentLoaderArgs);
const documents = await documentLoaderInstance.load();
See the full Loader tutorial.